Artificial Intelligence and Machine Learning Applications in Pain Assessment of Pediatric Patients
Pediatri hastalarının ağrı değerlendirmesinde hemşirelerin yapay zekâ ve makine öğrenimi uygulamaları
Artificial intelligence is a transformational technology affecting healthcare. With the emergence of artificial intelligence, revolutionary innovations have occurred in defence, finance, communication and healthcare. The use of artificial intelligence and machine learning in the health field; data analysis and integration of data into health services facilitate the adoption of technology by health professionals in diagnosis, treatment and patient care. Many interventions applied in the hospital and hospitalisation, which is the environment where healthcare services are provided, can cause fear, pain, anxiety and trauma in pediatric patients. Therefore, it is necessary to reduce the stress factors caused by illness and hospitalisation in newborns and children and to minimise these traumatic experiences. In addition to pharmacological methods, non-pharmacological methods are also used during the implementation of painful clinical procedures. Non-pharmacological methods are effective in reducing the rate of analgesic use, eliminating or reducing pain problems, and improving patients' quality of life. Non-pharmacological methods used in pain control of pediatric patients include behavioural, cognitive, combined cognitive-behavioural, physical and emotional approaches. As a non-pharmacological method, artificial intelligence, which has been widely used in the field of medicine in recent years, helps health professionals shape their practices, and its use is becoming increasingly important. With the use of artificial intelligence assessment tools and machine learning, more objective assessment results will be obtained in pain assessment, nurse workload will decrease and thus the time allocated for care will increase. In this context, this review aims to investigate the results of studies on the effect of artificial intelligence and machine learning applications in pain assessment of pediatric patients.
Yapay zekâ, sağlık hizmetini etkileyen dönüşümsel bir teknolojidir. Yapay zekanın ortaya çıkışı ile savunma, finans, iletişim ve sağlık alanında devrim niteliğinde yenilikler meydana gelmiştir. Yapay zekâ ve makine öğreniminin sağlık alanında kullanımı; veri analizi ve verilerin sağlık hizmetlerine entegrasyonu, tanı, tedavi ve hasta bakımında sağlık profesyonellerinin teknolojiyi benimsemelerini kolaylaştırmaktadır. Sağlık hizmetinin sunulduğu ortam olan hastane ve hastaneye yatışta uygulanan birçok girişim; pediatri hastalarında korku, ağrı, anksiyete ve travmaya neden olabilmektedir. Dolayısıyla yenidoğanlarda ve çocuklarda hastalık ve hastaneye yatışın neden olduğu stres faktörlerinin azaltılması ve bu travmatik deneyimlerin en aza indirilmesi gerekmektedir. Ağrılı klinik prosedürlerin uygulanması sırasında farmakolojik yöntemlerin yanı sıra non-farmakolojik yöntemler de kullanılmaktadır. Non-farmakolojik yöntemler; analjezik kullanma oranını azaltma, ağrı problemini giderme ya da azaltma ve hastaların yaşam kalitesini arttırmada etkilidir. Pediatri hastalarının ağrı kontrolünde kullanılan non-farmakolojik yöntemler; davranışsal, bilişsel, birleşik bilişsel-davranışsal, fiziksel ve duygusal yaklaşımları içeren yöntemlerdir. Non-farmakolojik bir yöntem olarak son yıllarda tıp alanında kullanımı oldukça yaygınlaşan yapay zekâ, sağlık çalışanlarının uygulamalarının şekillenmesi aşamasında sağlık profesyonellerine yardımcı olmakta ve kullanımı giderek önem kazanmaktadır. Yapay zekâ değerlendirme araçlarının ve makine öğreniminin kullanılması ile ağrıyı değerlendirmede daha objektif değerlendirme sonuçları ortaya çıkacak, hemşire iş yükü azalacak ve böylece bakım için ayrılan sürede artış olacaktır. Bu bağlamda bu derlemenin amacı; pediatri hastalarının ağrı değerlendirmelerinde hemşirelerin yapay zekâ ve makine öğrenimi uygulamalarının etkisine ilişkin çalışmaların sonuçlarını araştırmaktır.
autism screening in toddlers. Journal of Developmental & Behavioral Pediatrics, 40(5), 369-376.
Aziato, L., & Adejumo, O. (2014). Determinants of nurses' knowledge gap on pain management in Ghana. Nurse Education in Practice, 14(2), 195-199. DOI: https://doi.org/10.1016/j.nepr.2013.08.004
Akgerman, A., Yavuz, E. D. Ö., Kavaslar, İ., & Güngör, S. (2022). Yapay zekâ ve hemşirelik. Sağlık Bilimlerinde Yapay Zekâ Dergisi (Journal of Artificial Intelligence in Health Sciences) ISSN: 2757-9646, 2(1), 21-27. DOI: https://doi.org/10.52309/jaihs.v2i1.36
Alotaibi, K., Higgins, I., & Chan, S. (2019). Nurses’ knowledge and attitude toward pediatric pain management: a cross-sectional study. Pain Management Nursing, 20(2), 118-125. DOI: https://doi.org/10.1016/j.pmn.2018.09.001
Alkhatib, G. S., Al Qadire, M., & Alshraideh, J. A. (2020). Pain management knowledge and attitudes of healthcare professionals in primary medical centers. Pain Management Nursing, 21(3), 265-270. DOI: https://doi.org/10.1016/j.pmn.2019.08.008
Andersson, V., Bergman, S., Henoch, I., Simonsson, H., & Ahlberg, K. (2022). Pain and pain management in children and adolescents receiving hospital care: a cross-sectional study from Sweden. BMC Pediatrics, 22(1), 1-9. DOI: https://doi.org/10.1186/s12887-022-03319-w
Ardahan Sevgili, S., & Şenol, S. (2023). Prediction of chemotherapy-related complications in pediatric oncology patients: artificial intelligence and machine learning implementations. Pediatric Research, 93(2), 390-395. DOI: https://doi.org/10.1038/s41390-022-02356-6
Aydın, A. İ., & Özyazıcıoğlu, N. (2023). Assessment of postoperative pain in children with computer assisted facial expression analysis. Journal of Pediatric Nursing, 71, 60-65. DOI: https://doi.org/10.1016/j.pedn.2023.03.008
Chen, X., Zhu, H., Mei, L., Shu, Q., Cheng, X., Luo, F., ... & Pan, Y. (2023). Video-Based versus On-Site Neonatal Pain Assessment in Neonatal Intensive Care Units: The Impact of Video-Based Neonatal Pain Assessment in Real-World Scenario on Pain Diagnosis and Its Artificial Intelligence Application. Diagnostics, 13(16), 2661. DOI: https://doi.org/10.3390/diagnostics13162661
Cheng, X., Zhu, H., Mei, L., Luo, F., Chen, X., Zhao, Y., ... & Pan, Y. (2022). Artificial intelligence based pain assessment technology in clinical application of real-world neonatal blood sampling. Diagnostics, 12(8), 1831. DOI: https://doi.org/10.3390/diagnostics12081831
Çilhoroz, Y. & Işık, O. (2021). Yapay Zekâ: Sağlık Hizmetlerinden Uygulamalar. Ankara Hacı Bayram Veli Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 23 (2), 573-588.
Das, S., Dey, A., Pal, A., & Roy, N. (2015). Applications of artificial intelligence in machine learning: review and prospect. International Journal of Computer Applications, 115(9), 31-41. DOI: https://doi.org/10.5120/20182-2402
Daldrup-Link, H. (2019). Artificial intelligence applications for pediatric oncology imaging. Pediatric Radiology, 49(11), 1384-1390. DOI: https://doi.org/10.1007/s00247-019-04360-1
De Sario, G. D., Haider, C. R., Maita, K. C., Torres-Guzman, R. A., Emam, O. S., Avila, F. R., ... & Forte, A. J. (2023). Using AI to detect pain through facial expressions: a review. Bioengineering, 10(5), 548. DOI: https://doi.org/10.3390/bioengineering10050548
Fang, J., Wu, W., Liu, J., & Zhang, S. (2023). Deep learning–guided postoperative pain assessment in children. Pain, 164(9), 2029-2035. DOI: https://doi.org/10.1097/j.pain.0000000000002900
Ferrari, O. I., Zhang, F., Braam, A. A., Van Gurp, J. A., Broz, F., & Barakova, E. I. (2023). Design of Child-robot Interactions for Comfort and Distraction from Post-operative Pain and Distress. In Companion of the 2023 ACM/IEEE International Conference on Human-Robot Interaction (pp. 686-690). DOI: https://doi.org/10.1145/3568294.3580174
Gombolay, G. Y., Gopalan, N., Bernasconi, A., Nabbout, R., Megerian, J. T., Siegel, B., ... & Gombolay, M. C. (2023). Review of machine learning and artificial intelligence (ML/AI) for the pediatric neurologist. Pediatric Neurology, (141), 42-51 DOI: https://doi.org/10.1016/j.pediatrneurol.2023.01.004
Gökçen Gökalp, M., & Üzer, M. A. (2024). Yapay Zeka Çağında Hemşirelik Bakımı. Sağlık Bilimleri Üniversitesi Hemşirelik Dergisi, 6(1), 89-94. https://doi.org/10.48071/sbuhemsirelik.1349981 DOI: https://doi.org/10.48071/sbuhemsirelik.1349981
Gu, Q., & Li, S. E. (2022). Computed Tomography Image under Artificial Intelligence Algorithm to Evaluate the Nursing and Treatment Effect of Pemetrexed Combined Platinum‐Based Chemotherapy on Elderly Lung Cancer. Contrast Media & Molecular Imaging, 2022(1), 2574451. DOI: https://doi.org/10.1155/2022/2574451
Hagedorn, J. M., George, T. K., Aiyer, R., Schmidt, K., Halamka, J., & D’Souza, R. S. (2024). Artificial intelligence and pain medicine: an introduction. Journal of Pain Research, 509-518. DOI: https://doi.org/10.2147/JPR.S429594
Handelman, G. S., Kok, H. K., Chandra, R. V., Razavi, A. H., Lee, M. J., & Asadi, H. (2018). eD octor: machine learning and the future of medicine. Journal of Internal Medicine, 284(6), 603-619. DOI: https://doi.org/10.1111/joim.12822
Hughes, J. D., Chivers, P., & Hoti, K. (2023). The Clinical Suitability of an Artificial Intelligence–Enabled Pain Assessment Tool for Use in Infants: Feasibility and Usability Evaluation Study. Journal of Medical Internet Research, 25, e41992. DOI: https://doi.org/10.2196/41992
Jeddi, Z., Gryech, I., Ghogho, M., El Hammoumi, M., & Mahraoui, C. (2021). Machine learning for predicting the risk for childhood asthma using prenatal, perinatal, postnatal and environmental factors. In Healthcare, 9(1), p. 1464). MDPI. DOI: https://doi.org/10.3390/healthcare9111464
Kapan, NE. (2022). Çocuklarda Venöz Kan Alma İşleminde Çikolata Kokusu ve Stres Topunun Ağrı ve Korku Üzerine Etkisi. (Yüksek Lisans Tezi, Atatürk Üniversitesi Sağlık Bilimleri Enstitüsü, Erzurum)
Khan, M. A., Koh, R. G., Rashidiani, S., Liu, T., Tucci, V., Kumbhare, D., & Doyle, T. E. (2024). Cracking the Chronic Pain code: A scoping review of Artificial Intelligence in Chronic Pain research. Artificial Intelligence in Medicine, 102849. DOI: https://doi.org/10.1016/j.artmed.2024.102849
Koutsouleris, N., Dwyer, D. B., Degenhardt, F., Maj, C., Urquijo-Castro, M. F., Sanfelici, R., ... & PRONIA Consortium. (2021). Multimodal machine learning workflows for prediction of psychosis in patients with clinical high-risk syndromes and recent-onset depression. JAMA Psychiatry, 78(2), 195-209. DOI: https://doi.org/10.1001/jamapsychiatry.2020.3604
Kudubeş, A. A., Bektaş, İ., & Bektaş, M. (2021). Çocuklarda Ağrı Yönetiminde Hemşirenin Rolü. Journal of Education & Research in Nursing/Hemşirelikte Eğitim ve Araştırma Dergisi, 18(1).
Laures, E., LaFond, C., Hanrahan, K., Pierce, N., Min, H., & McCarthy, A. M. (2019). Pain assessment practices in the pediatric intensive care unit. Journal of Pediatric Nursing, 48, 55-62. DOI: https://doi.org/10.1016/j.pedn.2019.07.005
Leon, C., Carrault, G., Pladys, P., & Beuchée, A. (2020). Early detection of late onset sepsis in premature infants using visibility graph analysis of heart rate variability. IEEE Journal of Biomedical and Health Informatics, 25(4), 1006-1017. DOI: https://doi.org/10.1109/JBHI.2020.3021662
Liang, H., Tsui, B. Y., Ni, H., Valentim, C. C., Baxter, S. L., Liu, G., ... & Xia, H. (2019). Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence. Nature Medicine, 25(3), 433-438. DOI: https://doi.org/10.1038/s41591-018-0335-9
Lötsch, J., Ultsch, A., Mayer, B., & Kringel, D. (2022). Artificial intelligence and machine learning in pain research: A data scientometric analysis. Pain Reports, 7(6). DOI: https://doi.org/10.1097/PR9.0000000000001044
Mahon, P. R., & Reynolds, D. (2024). Lived Experiences of Adolescents Living With Primary Chronic Pain. Pain Management Nursing, 25(1), 19-26. DOI: https://doi.org/10.1016/j.pmn.2023.06.006
Mahmoudi, H., & Moradi, M. H. (2024). The Progress and Future of Artificial Intelligence in Nursing Care: A Review. The Open Public Health Journal, 17(1). DOI: https://doi.org/10.2174/0118749445304699240416074458
Matsangidou, M., Liampas, A., Pittara, M., Pattichi, C. S., & Zis, P. (2021). Machine learning in pain medicine: an up-to-date systematic review. Pain and Therapy, 1-18. DOI: https://doi.org/10.1007/s40122-021-00324-2
Martinez-Ortigosa, A., Martinez-Granados, A., Gil-Hernández, E., Rodriguez-Arrastia, M., Ropero-Padilla, C., & Roman, P. (2023). Applications of artificial intelligence in nursing care: a systematic review. Journal of Nursing Management, 2023(1), 3219127. DOI: https://doi.org/10.1155/2023/3219127
McGrow, K. (2019). Artificial intelligence: Essentials for nursing. Nursing2023, 49(9), 46-49. DOI: https://doi.org/10.1097/01.NURSE.0000577716.57052.8d
Moen, H., Hakala, K., Peltonen, L. M., Matinolli, H. M., Suhonen, H., Terho, K., ... & Salanterä, S. (2020). Assisting nurses in care documentation: from automated sentence classification to coherent document structures with subject headings. Journal of Biomedical Semantics, 11, 1-12. DOI: https://doi.org/10.1186/s13326-020-00229-7
Naushad, S. M., Dorababu, P., Rupasree, Y., Pavani, A., Raghunadharao, D., Hussain, T., ... & Kutala, V. K. (2019). Classification and regression tree-based prediction of 6-mercaptopurine-induced leucopenia grades in children with acute lymphoblastic leukemia. Cancer Chemotherapy and Pharmacology, 83, 875-880. DOI: https://doi.org/10.1007/s00280-019-03803-8
Ng, Z. Q. P., Ling, L. Y. J., Chew, H. S. J., & Lau, Y. (2022). The role of artificial intelligence in enhancing clinical nursing care: A scoping review. Journal of Nursing Management, 30(8), 3654-3674. DOI: https://doi.org/10.1111/jonm.13425
Özçevik Subaşi, D., Akça Sümengen, A., Semerci, R., Şimşek, E., Çakır, G. N., & Temizsoy, E. Paediatric nurses' perspectives on artificial intelligence applications: A cross‐sectional study of concerns, literacy levels and attitudes. Journal of Advanced Nursing. https://doi.org/10.1111/jan.16335 DOI: https://doi.org/10.1111/jan.16335
Rashidi, P., Edwards, D. A., & Tighe, P. J. (2019). Primer on machine learning: utilization of large data set analyses to individualize pain management. Current Opinion in Anaesthesiology, 32(5), 653. DOI: https://doi.org/10.1097/ACO.0000000000000779
Rossi, S., Larafa, M., & Ruocco, M. (2020). Emotional and behavioural distraction by a social robot for children anxiety reduction during vaccination. International Journal of Social Robotics, 12, 765-777. DOI: https://doi.org/10.1007/s12369-019-00616-w
Ruksakulpiwat, S., Thorngthip, S., Niyomyart, A., Benjasirisan, C., Phianhasin, L., Aldossary, H., ... & Samai, T. (2024). A systematic review of the application of artificial intelligence in nursing care: where are we, and what’s next?. Journal of Multidisciplinary Healthcare, 1603-1616. DOI: https://doi.org/10.2147/JMDH.S459946
Sahu, A., Mishra, J., & Kushwaha, N. (2022). Artificial intelligence (AI) in drugs and pharmaceuticals. Combinatorial Chemistry & High Throughput Screening, 25(11), 1818-1837. DOI: https://doi.org/10.2174/1386207325666211207153943
Shah, N., Arshad, A., Mazer, M. B., Carroll, C. L., Shein, S. L., & Remy, K. E. (2023). The use of machine learning and artificial intelligence within pediatric critical care. Pediatric Research, 93(2), 405-412. DOI: https://doi.org/10.1038/s41390-022-02380-6
Shu, L. Q., Sun, Y. K., Tan, L. H., Shu, Q., & Chang, A. C. (2019). Application of artificial intelligence in pediatrics: past, present and future. World Journal of Pediatrics, 15, 105-108. DOI: https://doi.org/10.1007/s12519-019-00255-1
Skog, N., Mesic Mårtensson, M., Dykes, A. K., & Vejzovic, V. (2021). Pain assessment from Swedish nurses' perspective. Journal for Specialists in Pediatric Nursing, 26(3), e12317. DOI: https://doi.org/10.1111/jspn.12317
Tanaka, K., Hayakawa, M., Noda, C., Nakamura, A., & Akiyama, C. (2022). Effects of artificial intelligence aibo intervention on alleviating distress and fear in children. Child and Adolescent Psychiatry and Mental Health, 16(1), 1-7. DOI: https://doi.org/10.1186/s13034-022-00519-1
Topaz, M., Murga, L., Gaddis, K. M., McDonald, M. V., Bar-Bachar, O., Goldberg, Y., & Bowles, K. H. (2019). Mining fall-related information in clinical notes: Comparison of rule-based and novel word embedding-based machine learning approaches. Journal of Biomedical Informatics, 90, 103103. DOI: https://doi.org/10.1016/j.jbi.2019.103103
Treiman-Kiveste, A., Pölkki, T., Kalda, R., & Kangasniemi, M. (2022). Nurses' perceptions of infants’ procedural pain assessment and alleviation with non-pharmacological methods in Estonia. Journal of Pediatric Nursing, 62, e156-e163. DOI: https://doi.org/10.1016/j.pedn.2021.09.006
Ufashingabire, C. M., Nsereko, E., Njunwa, K. J., & Brysiewicz, P. (2016). Knowledge and attitudes of nurses regarding pain in the intensive care unit patients in Rwanda. Rwanda Journal, 3(1), 21-26. DOI: https://doi.org/10.4314/rj.v3i1.4F
Ulubay, S., Ayoğlu, T., & Özcan, E. (2022). Hemşirelik Bakım ve Uygulamalarında Yapay Zekâ Kullanımının Önemi. Sağlık Bilimlerinde Yapay Zeka Dergisi, 2(2), 13-17. DOI: https://doi.org/10.52309/jaihs.v2i2.42
Ülgen, H., & Tüfekci, F. G. (2024). The Effect of Pain Management Education on Nurses’ Pain Knowledge and Attitudes. Pain Management Nursing, 25(3), e186-e191. DOI: https://doi.org/10.1016/j.pmn.2023.12.011
Van Bulck, L., Couturier, R., & Moons, P. (2023). Applications of artificial intelligence for nursing: has a new era arrived? European Journal of Cardiovascular Nursing, 22(3), e19-e20. DOI: https://doi.org/10.1093/eurjcn/zvac097
Yapıcı, G., & Ayyıldız, T. K. (2023). Çocuk Servislerinde Çalışan Hemşirelere Ağrı Değerlendirmesine Yönelik Verilen Eğitimin Etkisi: Yarı Deneysel Çalışma. Journal of Health Science Yuksek Ihtisas University, 4(1). DOI: https://doi.org/10.51261/yiu.2023.00056
Yorgancioglu Tarcan, G., Yalçın Balçık, P., & Sebik, N. B. (2024). Türkiye ve Dünyada Sağlık Hizmetlerinde Yapay Zekâ. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi, 14(1), 50-60. https://doi.org/10.31020/mutftd.1278529 DOI: https://doi.org/10.31020/mutftd.1278529
Yuan, L. (2024). Effect of Educational Interventions for Improving the Nurses' Knowledge, Attitude, and Practice of Pediatric Pain Management: A Aystematic Review and Meta-Analysis. Pain Management Nursing. https://doi.org/10.1016/j.pmn.2024.04.005 DOI: https://doi.org/10.1016/j.pmn.2024.04.005
Zare, S., Thomsen, M. R., Nayga Jr, R. M., & Goudie, A. (2021). Use of machine learning to determine the information value of a BMI screening program. American Journal of Preventive Medicine, 60(3), 425-433. DOI: https://doi.org/10.1016/j.amepre.2020.10.016
Zhang, F., Broz, F., Dertien, E., Kousi, N., Van Gurp, J. A., Ferrari, O. I., ... & Barakova, E. I. (2022). Understanding design preferences for robots for pain management: A co-design study. In 2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (pp. 1124-1129). IEEE. DOI: https://doi.org/10.1109/HRI53351.2022.9889542
Zhang, M., Zhu, L., Lin, S. Y., Herr, K., Chi, C. L., Demir, I., ... & Chi, N. C. (2023). Using artificial intelligence to improve pain assessment and pain management: a scoping review. Journal of the American Medical Informatics Association, 30(3), 570-587. DOI: https://doi.org/10.1093/jamia/ocac231
Zontag, D., Kuperman, P., Honigman, L., & Treister, R. (2022). Agreement between children's, nurses’ and parents’ pain intensity reports is stronger before than after analgesic consumption: Results from a post-operative study. International Journal of Nursing Studies, 130, 104176. DOI: https://doi.org/10.1016/j.ijnurstu.2022.104176
Zuazua-Rico, D., Maestro-Gonzalez, A., Cano-García, C., & Mosteiro-Diaz, M. P. (2023). Spanish Validation of Pediatric Nurses Knowledge and Attitudes Survey Regarding Pain. Pain Management Nursing, 24(3), 365-370. DOI: https://doi.org/10.1016/j.pmn.2022.09.007

Telif Hakkı (c) 2025 Journal of Infant, Child and Adolescent Health
Bu çalışma Creative Commons Attribution 4.0 International License ile lisanslanmıştır.
İndir
Makale Bilgileri
- Makale Türü Derleme Makalesi
- Gönderildi Ağustos 29, 2024
- Yayınlanmış Eylül 8, 2025
- Sayı Cilt 5 Sayı 2 (2025)
- Bölüm Derleme Makalesi